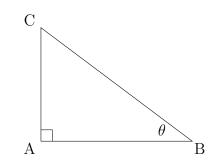


In this worksheet you will learn to define and use the trigonometric ratios $\sin \theta$, $\cos \theta$, and $\tan \theta$ in right-angled triangles so that you can solve problems effectively.

Easy Questions

- 1. Write the definitions of $\sin \theta$, $\cos \theta$, and $\tan \theta$ in a right-angled triangle. Use the terms "opposite", "adjacent", and "hypotenuse" in your definitions.
- 2. Look at the diagram below. For the acute angle θ , label the side opposite, the side adjacent, and the hypotenuse.

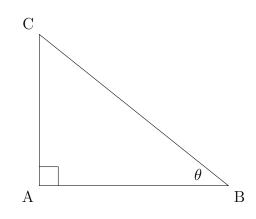


- 3. Using your knowledge of trigonometric ratios, calculate $\sin(30^\circ)$.
- 4. In a right-angled triangle, if the length of the adjacent side for angle θ is 4 and the hypotenuse is 5, calculate $\cos \theta$.
- 5. State which trigonometric ratio relates the length of the side opposite to the length of the side adjacent in a right-angled triangle.

Intermediate Questions

- 6. In a right-angled triangle the length of the side opposite an angle θ is 7. Write an expression for the hypotenuse in terms of $\sin \theta$.
- 7. If $\cos \theta$ is defined by $\cos \theta = \frac{a}{10}$, express a in terms of $\cos \theta$.
- 8. Given $\tan \theta = \frac{x}{12}$, rearrange the equation to express x in terms of $\tan \theta$.
- 9. Given that in a right-angled triangle $\sin \theta = \frac{3}{5}$, use the identity $\sin^2 \theta + \cos^2 \theta = 1$ to write an expression for $\cos \theta$ in terms of $\sin \theta$.

- 10. Using your answer from the previous question, calculate $\cos \theta$ when $\sin \theta = \frac{3}{5}$ (take the positive square root as θ is acute).
- 11. Draw the right-angled triangle provided below and label all sides and the acute angle θ . Then write the definitions of $\sin \theta$, $\cos \theta$, and $\tan \theta$ for your diagram.



- 12. Refer to the diagram in Question 11. If the side opposite to angle θ has length 4 and the adjacent side has length 3, calculate $\tan \theta$.
- 13. On a blank sheet of paper, draw a right-angled triangle and label one of its acute angles as θ . Then, write down the formulas for $\sin \theta$, $\cos \theta$, and $\tan \theta$ using your diagram.
- 14. Solve for x if $\sin \theta = \frac{x}{20}$ and it is given that $\sin \theta = \frac{1}{2}$.
- 15. If $\cos \theta = 0.6$, use the Pythagorean identity to determine $\sin \theta$ for an acute angle θ .
- 16. In a right-angled triangle, if $\tan \theta = 0.75$ and the length of the adjacent side is 8, calculate the length of the side opposite to θ .
- 17. Show algebraically that $\tan \theta$ can be expressed as $\tan \theta = \frac{\sin \theta}{\cos \theta}$.
- 18. True or False: For a given acute angle in any right-angled triangle, the trigonometric ratios $\sin \theta$, $\cos \theta$, and $\tan \theta$ remain constant. Provide a brief explanation for your answer.
- 19. In a right-angled triangle, the sine of an acute angle θ is given by $\sin \theta = \frac{5}{h}$, where h represents the hypotenuse. Find the value of h if $\sin \theta = 0.5$.
- 20. If $\tan \theta = k$ for an acute angle θ , derive expressions for $\sin \theta$ and $\cos \theta$ in terms of k.

Hard Questions

21. Using the definitions of $\sin \theta$ and $\cos \theta$ in a right-angled triangle, prove that $\sin^2 \theta + \cos^2 \theta = 1$.

- 22. Prove that if $\tan \theta = k$ then $\sin \theta = \frac{k}{\sqrt{1+k^2}}$ and $\cos \theta = \frac{1}{\sqrt{1+k^2}}$, for an acute angle θ .
- 23. In a right-angled triangle with sides of lengths a, b, and hypotenuse c, let θ be the acute angle opposite side a. Write $\sin \theta$ in terms of a and c. Then, using the relationship $a^2 + b^2 = c^2$, discuss briefly why $\sin \theta \leq 1$.
- 24. Suppose that in a right-angled triangle $\sin \theta = \frac{2x}{5}$ and $\cos \theta = \frac{\sqrt{25 4x^2}}{5}$ for $0 < x \le \frac{5}{2}$ and $0 < \theta < 90^\circ$. Show that $\tan \theta = \frac{2x}{\sqrt{25 4x^2}}$ and state the constraints on x for the expression to be valid.
- 25. In a right-angled triangle with side lengths in the ratio 3:4:5, calculate $\sin \theta$, $\cos \theta$, and $\tan \theta$ for the acute angle opposite the side of length 3.
- 26. Using pen and paper, construct a right-angled triangle with an acute angle of your choice. Measure the lengths of the sides and verify that the definitions of $\sin \theta$, $\cos \theta$, and $\tan \theta$ hold true. Write a short explanation of your findings.
- 27. For an acute angle θ in a right-angled triangle, if $\sin \theta = \frac{\sqrt{2}}{2}$, determine $\cos \theta$ and $\tan \theta$ without using a calculator.
- 28. A right-angled triangle has side lengths 5, 12, and 13. Identify the smallest acute angle and compute $\sin \theta$, $\cos \theta$, and $\tan \theta$ for that angle.
- 29. Given that $\tan \theta = \frac{\sin \theta}{\cos \theta}$, solve algebraically for $\cos \theta$ in terms of $\tan \theta$ and $\sin \theta$.
- 30. For an acute angle θ in a right-angled triangle, if $\sin \theta = 0.8$, derive and simplify the expressions for $\cos \theta$ and $\tan \theta$ in radical form.