

This worksheet focuses on the sine rule: learning how to use the relation $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ to solve non-right-angled triangles effectively. Work through the questions in order.

Easy Questions

- 1. Write down the sine rule for any triangle with sides a, b, c and opposite angles A, B, C.
- 2. In any triangle the sum of the interior angles is 180° . Given that $A = 40^{\circ}$ and $B = 70^{\circ}$, write an expression for the third angle C.
- 3. In a triangle, if $A = 30^{\circ}$, $B = 45^{\circ}$ and the side opposite A is a = 10, use the sine rule to set up an expression to find side b. Do not solve it completely.
- 4. Consider a triangle where $A = 50^{\circ}$, $B = 60^{\circ}$, and the side opposite A is a = 12. Write an expression using the sine rule to find side b. Simplify your expression as much as possible.
- 5. Below is a diagram of a triangle. Using the diagram, label the sides and angles. Given that $B = 40^{\circ}$, $C = 70^{\circ}$ and the side opposite B is b = 9, write the sine rule expression to find side c.

Intermediate Questions

- 6. In a triangle, given $A = 40^{\circ}$, $B = 60^{\circ}$, and side a = 10, first find C, then use the sine rule to find side b.
- 7. Given that $A = 30^{\circ}$, $B = 100^{\circ}$ and side c = 15 in a triangle, find the third angle and then set up the sine rule to solve for side a.

- 8. In a triangle, let $A = 50^{\circ}$, $B = 80^{\circ}$ and side a = 7. Find angle C and use the sine rule to determine side c.
- 9. For a triangle with $A = 65^{\circ}$, $C = 55^{\circ}$, and side c = 9, compute angle B and then use the sine rule to find side a.
- 10. A triangle has $A = 25^{\circ}$, $B = 80^{\circ}$, and side a = 8. Compute angle C, then use the sine rule to determine side b.
- 11. In a triangle, if $B = 70^{\circ}$, $C = 40^{\circ}$, and side c = 10, first determine angle A and then use the sine rule to find side b.
- 12. For a triangle with $A = 55^{\circ}$, $B = 65^{\circ}$, and side a = 11, find the third angle C and use the sine rule to solve for side b.
- 13. Consider the triangle shown below. Given that $A = 35^{\circ}$, $B = 75^{\circ}$, and side b = 14, first determine angle C and then set up the sine rule to calculate side a.

- 14. In a triangle, if $C = 60^{\circ}$, $A = 45^{\circ}$, and side c = 13, first find the remaining angle B, then use the sine rule to find side a.
- 15. A triangle has $A = 50^{\circ}$, side a = 15, and $B = 75^{\circ}$. Determine angle C and then use the sine rule to calculate side b.
- 16. In a triangle with $A = 50^{\circ}$, $C = 40^{\circ}$, and side a = 10, first compute angle B and then apply the sine rule to find side c.
- 17. Consider a triangle with sides a = 8, b = 10, and angle $A = 30^{\circ}$. Use the sine rule to find the possible value(s) for angle B. Explain if an ambiguous case exists.
- 18. Given a triangle where a = 9, $A = 40^{\circ}$, and $B = 55^{\circ}$, determine angle C and then use the sine rule to solve for side b. Round your answer to one decimal place.
- 19. In a triangle with side a = 20, $A = 100^{\circ}$, and $B = 30^{\circ}$, first obtain angle C and then solve for side b using the sine rule.
- 20. For a triangle where a = 12, $A = 70^{\circ}$, and $B = 40^{\circ}$, find angle C and use the sine rule to determine side b.

Hard Questions

- 21. A triangle has side a = 8, angle $A = 45^{\circ}$, and side b = 10. Determine all possible triangles that satisfy these conditions using the sine rule.
- 22. In a triangle, given a = 7, b = 10 and $A = 30^{\circ}$, use the sine rule to determine the possible values for angle B. Clearly explain the ambiguity.
- 23. A triangle has side a = 9, side b = 12, and angle $A = 40^{\circ}$. Determine both possible measures of angle B (if they exist) and then use the sine rule to find side c.
- 24. Consider the circumstance in which the sine rule yields two possible values for an angle. Prove that only one of these possible angles will yield a valid triangle by discussing the sum of the angles.
- 25. Derive an expression for side c in terms of side a, angle A and angle C using the sine rule.
- 26. In triangle ABC, given that a = 15, $A = 80^{\circ}$, and $B = 50^{\circ}$, compute the third angle C and then calculate side b using the sine rule. Give your answer for side b rounded to three decimal places.
- 27. A triangle has angles $A = 30^{\circ}$, $B = 45^{\circ}$, and side c = 14. Determine the remaining angle and use the sine rule to calculate side a. Round your answer to one decimal place.
- 28. In a triangle, if side a = 10, side b = 12, and angle $A = 40^{\circ}$, use the sine rule to determine the possible values for angle B. Explain your reasoning.
- 29. In triangle ABC, the side opposite angle A is 16, angle $A = 55^{\circ}$, and angle $B = 65^{\circ}$. Determine angle C and then compute side b using the sine rule.
- 30. A triangle has side a = 22, angle $A = 85^{\circ}$, and angle $B = 50^{\circ}$. Calculate angle C and use the sine rule to find side b. Provide your answers with appropriate rounding.