

This worksheet covers the sine rule and how to use it to solve non-right-angled triangles effectively. You will learn to apply the sine rule to find unknown sides or angles, recognise the ambiguous case where applicable, and ensure the triangle's validity.

Easy Questions

- 1. Determine side b in triangle ABC if $\angle A = 30^{\circ}$, $\angle B = 45^{\circ}$, and side a = 8.
- 2. In triangle PQR, given that $\angle P = 60^\circ$, $\angle Q = 50^\circ$, and side p = 10, find side q.
- 3. In triangle ABC, if $\angle A = 40^\circ$, $\angle B = 80^\circ$, and side a = 7, determine side b.
- 4. In triangle DEF, given $\angle D = 55^{\circ}$, $\angle E = 65^{\circ}$, and side d = 9, first find $\angle F$, then compute side f.
- 5. In triangle GHI, if side g = 11, side h = 13, and $\angle G = 40^{\circ}$, use the sine rule to find $\angle H$.

Intermediate Questions

- 11. In triangle ABC, given $\angle A = 35^{\circ}$, $\angle B = 85^{\circ}$, and side a = 12, determine side b.
- 12. In triangle PQR, with side p = 14, side q = 10, and $\angle P = 50^{\circ}$, find $\angle Q$.
- 13. In triangle XYZ, if $\angle X = 25^{\circ}$, $\angle Y = 75^{\circ}$, and side x = 8, determine side y.
- 14. In triangle ABC, given side a = 9, side c = 12, and $\angle A = 30^{\circ}$, use the sine rule to determine $\angle C$. (Consider the possible ambiguous case.)
- 15. In triangle LMN, if side l = 7, side m = 10, and $\angle L = 45^{\circ}$, find $\angle M$ noting the ambiguous case if relevant.
- 16. In triangle *DEF*, where $\angle D = 100^\circ$, $\angle E = 30^\circ$, and side d = 15, compute side e.
- 17. In triangle PQR, given side p = 16, side r = 20, and $\angle P = 40^{\circ}$, determine $\angle R$.
- 18. In triangle ABC, if $\angle A = 70^{\circ}$, $\angle C = 50^{\circ}$, and side c = 14, find side a.
- 19. In triangle XYZ, given $\angle X = 55^{\circ}$, $\angle Z = 65^{\circ}$, and side x = 10, calculate side z.
- 20. In triangle MNO, where side m = 8, side o = 11, and $\angle M = 36^{\circ}$, find $\angle O$, and state whether the solution is unique.
- 21. In triangle ABC, if side a = 20, $\angle A = 40^{\circ}$, and $\angle B = 70^{\circ}$, determine side b.

- 22. In triangle JKL, given $\angle J = 110^\circ$, $\angle K = 30^\circ$, and side j = 18, compute side k.
- 23. In triangle PQR, with side p = 13, side q = 9, and $\angle P = 55^{\circ}$, calculate $\angle Q$.
- 24. In triangle ABC, given $\angle A = 40^\circ$, $\angle B = 60^\circ$, and side a = 12, determine side b.
- 25. In triangle DEF, if side d = 10, side f = 12, and $\angle D = 25^{\circ}$, use the sine rule to find $\angle F$. Discuss the ambiguous case if applicable.

Hard Questions

- 21. In triangle ABC, given side a = 8, side c = 10, and $\angle A = 30^{\circ}$, use the sine rule to find the possible values of $\angle C$. State both answers if they exist.
- 22. In triangle PQR, if side p = 9, side q = 15, and $\angle P = 40^{\circ}$, find the possible measures of $\angle Q$. Discuss whether one or two triangles are possible.
- 23. In triangle LMN, given side l = 7, side n = 9, and $\angle L = 35^{\circ}$, use the sine rule to determine $\angle N$. Discuss any ambiguous case that may arise.
- 24. In triangle DEF, if $\angle D = 120^{\circ}$, side d = 14, and side e = 10, compute $\angle E$ using the sine rule. State if the solution is unique.
- 25. In triangle *GHI*, given side g = 11, side i = 13, and $\angle G = 47^{\circ}$, find $\angle I$ using the sine rule. Consider any possible ambiguous case.
- 26. In triangle ABC, with $\angle A = 28^{\circ}$, side a = 16, and side b = 19, determine $\angle B$. Mention if an ambiguous case arises.
- 27. In triangle XYZ, if side x = 12, side y = 15, and $\angle X = 33^{\circ}$, find $\angle Y$ using the sine rule.
- 28. In triangle PQR, given $\angle P = 37^{\circ}$, side p = 21, and side r = 18, calculate $\angle R$ using the sine rule. Discuss any possible multiple solutions.
- 29. In triangle ABC, if side a = 14, side c = 17, and $\angle A = 42^{\circ}$, use the sine rule to find $\angle C$, considering both possible scenarios.
- 30. In triangle DEF, given $\angle D = 50^{\circ}$, side d = 17, and side f = 20, first use the sine rule to find $\angle F$, then determine $\angle E$.