

In this worksheet students will learn how to determine unknown angles in a rightangled triangle using inverse trigonometric functions. You will apply the functions \sin^{-1} , \cos^{-1} , and \tan^{-1} to find the measure of the acute angle in various scenarios.

Easy Questions

- 1. Given that $\sin(\theta) = \frac{1}{2}$, find θ .
- 2. Given that $\cos(\theta) = \frac{\sqrt{3}}{2}$, determine θ .
- 3. Given that $\tan(\theta) = 1$, find θ .
- 4. Given that $\sin(\theta) = 0.6$, determine θ to the nearest degree.
- 5. Given that $\cos(\theta) = 0.8$, find θ to the nearest degree.

Intermediate Questions

- 6. Use the inverse tangent function to find θ if $\tan(\theta) = \frac{3}{4}$. Provide your answer in degrees.
- 7. Find θ if $\sin(\theta) = 0.8$. Express your answer in degrees.
- 8. Determine θ using the inverse cosine if $\cos(\theta) = 0.6$. Give your answer in degrees.
- 9. Find θ if $\tan(\theta) = 0.75$. Express your answer in degrees rounded to one decimal place.
- 10. If $\sin(\theta) = 0.9$, determine θ to one decimal place.
- 11. In a right-angled triangle, if $\tan(\theta) = 0.5$, use \tan^{-1} to find θ (in degrees, one decimal place).
- 12. Find θ if $\sin(\theta) = 0.6428$. Express θ in degrees.
- 13. Determine θ if $\cos(\theta) = 0.3420$. Write your answer in degrees.
- 14. Find θ if $\sin(\theta) = 0.17365$. Give your answer in degrees.
- 15. Evaluate θ if $\cos(\theta) = 0.9397$. Provide θ in degrees.

- 16. Find θ if $\tan(\theta) = 1.1918$. Express your answer in degrees to one decimal place.
- 17. Given that $\sin(\theta) = 0.7660$, calculate θ in degrees.
- 18. In a right-angled triangle, if $\cos(\theta) = 0.8660$, determine θ in degrees.
- 19. Compute θ if $\tan(\theta) = 2$. Give your answer in degrees to one decimal place.
- 20. The diagram below shows a right-angled triangle with angle A. It is given that sin(A) = 0.8. Use this information to find the measure of A in degrees.

Hard Questions

- 21. In a right-angled triangle the side opposite θ is 3 and the hypotenuse is 5. Find θ in degrees.
- 22. A right-angled triangle has a side opposite θ measuring 7 units and a hypotenuse measuring 10 units. Use the inverse sine function to determine θ to one decimal place.
- 23. A right-angled triangle has an acute angle θ such that the ratio of the adjacent side to the hypotenuse is 0.8. Find θ using the inverse cosine function. Provide your answer in degrees.
- 24. In a right-angled triangle, the side opposite θ is 8 units and the side adjacent to θ is 6 units. Find θ by using the inverse tangent function. Express your answer in degrees.
- 25. Given that $\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{5}{12}$, find θ in degrees using the inverse tangent function.
- 26. In a right-angled triangle, if the ratio of the length of the side opposite θ to the hypotenuse is $\frac{4}{7}$, determine θ using the inverse sine function. Express your answer in degrees.
- 27. A right-angled triangle has an acute angle θ such that $\cos(\theta) = \frac{5}{13}$. Find θ in degrees.
- 28. If $\tan(\theta) = \frac{7}{24}$, determine θ to one decimal place. Show your working by using the inverse tangent function.

www.illawarratutoring.com.au

- 29. Given that $\sin(\theta) = 0.552$, compute θ in degrees rounded to one decimal place.
- 30. In a right-angled triangle, if $\cos(\theta) = 0.45$, use the inverse cosine function to find θ . Provide your answer in degrees, rounded to one decimal place.

www.illawarratutoring.com.au