

In this worksheet, you will master the techniques to calculate the area of a triangle using trigonometric methods. You will use the formula $A = \frac{1}{2}ab\sin C$ to solve a variety of problems, including numerical evaluations, algebraic expressions and word problems.

Easy Questions

- 1. Use the formula $A = \frac{1}{2}ab\sin C$ to find the area of a triangle with side lengths a = 6 and b = 8 when the included angle is 30°. Explain your working.
- 2. A triangle has sides of lengths 10 and 15 with an included angle of 45°. Calculate its area. Show all steps.
- 3. Determine the area of a triangle where a = 5, b = 9 and the included angle is 60° . Write down your working clearly.
- 4. In a triangle, if a = 5, b = 7 and the area is 8.75, find the value of $\sin C$. Explain the steps used to obtain your answer.
- 5. Explain which angle is used in the formula $A = \frac{1}{2}ab\sin C$ and why it is important to consider the included angle when calculating the area of a triangle.

Intermediate Questions

6. The triangle ABC is shown in the diagram below.

Calculate the area of $\triangle ABC$ given that the angle between the sides of lengths 7 and 10 is 60°.

7. A triangular park has two sides measuring 12 m and 20 m with an included angle of 70° . Find the area of the park. Show all working.

- 8. In a triangle the side a = 8 and the included angle is 45° . If the area of the triangle is 20, find the length of side b. Explain your process.
- 9. A triangle has sides a = 9 and b = 11 and an area of 42.75. Determine the measure of the included angle C. Include all steps.
- 10. A student calculated the area of a triangle with sides 6 and 8 and an included angle of 30° but obtained an area of 12. Identify and explain the error in the student's calculation.
- 11. State and explain the derivation of the formula $A = \frac{1}{2}ab\sin C$. Write your explanation clearly.
- 12. A triangle has two sides of lengths 5 and 8 with an area of 30. Determine $\sin C$ of the included angle and then calculate C in degrees. Show all working.
- 13. In a triangle, if a = 3, the included angle is 30° and the area is 15, find the length of side b. Explain your steps.
- 14. Calculate the area of a triangle with side lengths 7 and 9 and an included angle of 75° . (Use sin $75^{\circ} \approx 0.9659$). Detail your calculations.
- 15. Show that if you double the included angle in a triangle while keeping the adjacent sides constant, the area does not necessarily double. Use the area formula and explain your reasoning.
- 16. If a = x + 2 and b = 2x with an included angle of 45° , write an expression for the area of the triangle in terms of x. Clearly show each step in your derivation.
- 17. A triangular ramp is constructed with sides measuring 4 m and 6 m, and the included angle is 80° . Calculate the area of the ramp. Provide a clear explanation.
- 18. A triangle has an area of 50 m^2 with one side length of 10 m and the other side b. If the included angle is 60° , determine the value of b. Explain your procedure.
- 19. Given a triangle with sides a = 8 and b = 12 and an included angle of 50°, compute its area to one decimal place using $\sin 50^{\circ} \approx 0.7660$. Show your working.
- 20. A triangle is drawn on grid paper with adjacent side lengths of 5 cm and 7 cm and an included angle of 65° . Calculate its area. Provide all calculations.

Hard Questions

- 21. Derive the formula $A = \frac{1}{2}ab\sin C$ for the area of a triangle using trigonometric principles. Provide a detailed step-by-step explanation.
- 22. A triangle has sides given by a = 2x and b = x + 3 with an included angle of 30° . If the area of the triangle is 10, solve for x. Present your solution clearly.
- 23. In a triangle, let a = 3k and b = 4k with an included angle of 60°. Express the area in terms of k and then determine the value of k if the area is 12. Explain your working.

- 24. A triangle has two sides measuring 11 and 13. When the included angle is 90° , the area is maximised. If the actual area is 30% less than this maximum area, determine the measure of the actual included angle. Provide clear working.
- 25. Using the area formula $A = \frac{1}{2}ab\sin C$, prove that for a fixed product ab, the area is maximised when the included angle C is 90°. Write a clear and rigorous proof.
- 26. A triangle has sides a = 5 and b = 12 with an included angle of 40° (which is twice 20°). Calculate its area and then compute the area if the included angle were 90° . Compare the two results and explain your findings.
- 27. For a triangle with sides 7 and 10, determine the measure of the included angle C if the area is 30. Use the formula and justify each step in your solution.
- 28. Using pen and paper, construct a triangle with sides 6 and 8 and an included angle of 55°. Then, calculate the area of your constructed triangle. Write a brief description of your construction process and all calculations.
- 29. Given the area formula $A = \frac{1}{2}ab\sin C$, discuss how small changes in the included angle C affect the area when C is near 90°. Use basic calculus concepts (such as differentiation with respect to C) to support your discussion. Provide a clear explanation.
- 30. A triangular plot of land has sides of lengths 16 m and 22 m with an unknown included angle. If the area of the plot is 100 m^2 , determine the value of $\sin C$ and then find the measure of C in degrees. Additionally, discuss any potential limitations or considerations when using the formula $A = \frac{1}{2}ab\sin C$ in practical situations. Provide full working and explanations.