

This worksheet focuses on angles of any magnitude. You will learn how to apply trigonometric ratios to angles beyond 90° , enabling you to solve a wider range of problems by reducing angles to their reference angles, identifying the appropriate quadrants and determining the correct signs of the trigonometric ratios.

Easy Questions

- 1. Evaluate $\sin(120^\circ)$.
- 2. Evaluate $\cos(150^\circ)$.
- 3. Determine the reference angle for 240° .
- 4. Evaluate $\sin(270^\circ)$.
- 5. Evaluate $\sin(360^{\circ} + 45^{\circ})$.

Intermediate Questions

- 6. Reduce 405° to an equivalent angle between 0° and 360° , and evaluate its sine.
- 7. Reduce 390° to an angle in standard position, and evaluate $\cos(390^{\circ})$.
- 8. Evaluate $\sin(-30^\circ)$.
- 9. Evaluate $\cos(-120^\circ)$.
- 10. Calculate $\sin(215^\circ)$ to two decimal places.
- 11. Identify the quadrant in which 330° lies and evaluate $\cos(330^{\circ})$.
- 12. Explain in your own words the process to find $\sin(\theta)$ for any angle θ greater than 90° .
- 13. Evaluate $\tan(600^\circ)$.
- 14. Find all angles x (where $0^{\circ} \le x < 360^{\circ}$) such that $\sin(x) = \sin(30^{\circ})$.
- 15. Evaluate $\cos(-450^\circ)$.
- 16. Determine $\sin(810^\circ)$.
- 17. Verify that $\sin(\theta) = \sin(180^\circ \theta)$ for an acute angle θ , and explain why this is true.

www.illawarratutoring.com.au

- 18. Draw a diagram (using tikz) of an angle 210° in standard position. Mark the terminal side, the reference angle, and label the corresponding coordinates of the point where the terminal side meets the unit circle.
- 19. Describe in detail the process used to evaluate a trigonometric ratio for an angle greater than 90° .
- 20. Evaluate $\tan(315^\circ)$.

Hard Questions

- 21. Evaluate $\sin(-725^\circ)$.
- 22. Prove that if α and β are angles such that $\alpha = \beta + 360^{\circ}k$ (where $k \in \mathbb{Z}$), then $\cos(\alpha) = \cos(\beta)$.
- 23. Evaluate $\sin(1025^\circ)$ and express your answer in terms of the sine of an acute angle.
- 24. Find a coterminal angle θ with -820° such that $0^{\circ} \leq \theta < 360^{\circ}$, and then evaluate $\sin(\theta)$ and $\cos(\theta)$.
- 25. Express $\tan(1080^\circ + \theta)$ in terms of $\tan(\theta)$.
- 26. If $3\theta = 405^{\circ}$, find θ and subsequently evaluate $\sin(\theta)$.
- 27. Determine the quadrant in which 750° terminates and evaluate $\sin(750^{\circ})$.
- 28. Evaluate $\sin(-150^\circ)$ and explain your reasoning regarding the sign.
- 29. An object rotates through an angle of 12345°. Compute an equivalent angle θ such that $0^{\circ} \leq \theta < 360^{\circ}$, and then approximate $\sin(\theta)$ to three decimal places.
- 30. Explain why an angle and any of its coterminal angles have the same trigonometric ratios. Support your explanation with an example of your choice.