

In this worksheet, you will learn how to apply trigonometric ratios to angles beyond 90°. You will practise reducing large and negative angles, determining coterminal angles, finding reference angles, and evaluating trigonometric functions using these concepts.

Easy Questions

- 1. Determine the quadrant in which the terminal side of the angle 135° lies.
- 2. Find the reference angle of 150° .
- 3. Using the concept of reference angles, evaluate $\sin(210^\circ)$.
- 4. Evaluate $\cos(-30^\circ)$.
- 5. Explain why $\tan(270^\circ)$ is undefined.

Intermediate Questions

- 6. Find the values of $\sin(225^\circ)$, $\cos(225^\circ)$ and $\tan(225^\circ)$.
- 7. Evaluate $\sin(300^\circ)$ and $\cos(300^\circ)$ exactly.
- 8. The angle 405° is given. Reduce it to an equivalent angle between 0° and 360° and then evaluate $\sin(405^{\circ})$.
- 9. Express $\cos(-150^\circ)$ in terms of a cosine of a positive angle and evaluate it.
- 10. Sketch the terminal side of 135° on the unit circle and label the coordinates of the point where the terminal side intersects the circle.
- 11. Determine the reference angle of 135° and then evaluate $\tan(135^{\circ})$.
- 12. Express $\sin(-210^{\circ})$ as the sine of a positive angle and evaluate it.
- 13. Calculate $\cos(720^{\circ} + 30^{\circ})$.
- 14. Compute $\sin(810^\circ)$.
- 15. Find the value of $\sin(-420^\circ)$.
- 16. If $\theta = 390^{\circ}$, reduce it to an equivalent angle between 0° and 360° and then evaluate $\cos \theta$.

www.illawarratutoring.com.au

- 17. Show that $\sin(180^\circ + 30^\circ) = -\sin(30^\circ)$ by drawing the appropriate unit circle diagram.
- 18. Evaluate $\tan(-135^\circ)$.
- 19. For $\theta = -600^{\circ}$, find a positive coterminal angle between 0° and 360° and then compute $\cos \theta$.
- 20. Determine $\sin(510^\circ)$.

Hard Questions

- 21. Show that $\cos(360^\circ \theta) = \cos \theta$ for $\theta = 150^\circ$ by computing both sides and discussing the result.
- 22. A rotated angle is given by -735° . Find a coterminal angle between 0° and 360° and then evaluate tan of this angle.
- 23. Given $\theta = 1230^{\circ}$, determine its reference (acute) angle and state whether $\sin(\theta)$ is positive or negative.
- 24. Compute $\cos(-1125^\circ)$ by finding its equivalent angle between 0° and 360° .
- 25. Evaluate $\tan(405^\circ 720^\circ)$ by first simplifying the angle.
- 26. For $\theta = -845^{\circ}$, determine a positive coterminal angle and then compute $\cos \theta$.
- 27. Draw the terminal side of 260° on a unit circle and label the coordinates of the intersection point.
- 28. If an angle θ satisfies $\sin \theta = -0.5$ and it is given that θ does not lie in the third quadrant, determine all possible values of θ between 0° and 360°.
- 29. For $\theta = 670^{\circ}$, determine the reference angle and then evaluate $\cos \theta$, explaining the sign based on the quadrant in which the terminal side lies.
- 30. A beam of light rotates through -810° . Find the positive coterminal angle and then determine sin of the resulting angle.