

This worksheet develops a deep understanding of differentiation from first principles. In this worksheet, you will derive the derivative of basic functions using the definition of the derivative.

Easy Questions

- 1. Use the definition of the derivative to find the derivative of f(x) = x.
- 2. Use first principles to find the derivative of f(x) = 7.
- 3. Use differentiation from first principles to compute the derivative of f(x) = -x.
- 4. Using the limit definition of the derivative, determine the derivative of f(x) = x+3.
- 5. Use first principles to show that the derivative of f(x) = 0 is zero.

Intermediate Questions

- 6. Derive the derivative of $f(x) = x^2$ using first principles.
- 7. Using first principles, find the derivative of $f(x) = 3x^2$.
- 8. Derive the derivative of $f(x) = x^3$ from first principles.
- 9. Use the limit process to find the derivative of $f(x) = ax^2 + bx + c$, where a, b, and c are constants.
- 10. Find the derivative of $f(x) = 4x^2 5x + 2$ using the definition of the derivative.
- 11. Use first principles to derive the derivative of $f(x) = \frac{1}{x}$.
- 12. Derive the derivative of $f(x) = \sqrt{x}$ by applying the limit definition and rationalising the numerator.

13. Using first principles, determine the derivative of $f(x) = \frac{1}{\sqrt{x}}$.

- 14. Find the derivative of $f(x) = 2x^3 + 5$ using the first principles approach.
- 15. Verify from first principles that the derivative of $f(x) = x^4$ is $4x^3$.
- 16. Use the limit definition to show that the derivative of $f(x) = 1 x^2$ is -2x.
- 17. Using first principles, calculate the derivative of $f(x) = 3x^2 2x + 7$.

- 18. Find the derivative of $f(x) = -2x^2 + x$ by applying the definition of the derivative.
- 19. Use first principles to show that the derivative of f(x) = ax + b is a, where a and b are constants.
- 20. Derive the derivative of $f(x) = 5x^2$ using the limit process.

Hard Questions

- 20. Prove using first principles that $f(x) = x^4$ has a derivative of $4x^3$. Provide each step of your binomial expansion.
- 21. Using first principles, derive the derivative of $f(x) = \frac{1}{x}$ by rewriting it as x^{-1} and simplifying the difference quotient.
- 22. For the function $f(x) = x^{\frac{3}{2}}$, use differentiation from first principles to find its derivative.
- 23. Show using first principles that the derivative of f(x) = |x| does not exist at x = 0. Explain your reasoning.
- 24. Derive the derivative of $f(x) = \sqrt{x}$ from first principles, clearly showing how you rationalise the numerator.
- 25. Using first principles, determine the derivative of $f(x) = \frac{1}{\sqrt{x}}$ by expressing the function in exponential notation.
- 26. Calculate the derivative of $f(x) = (x 1)^2$ using the definition of the derivative. Expand the expression before simplifying.
- 27. Derive the derivative of $f(x) = (2x+3)^2$ using first principles. Begin by expanding the squared term.
- 28. Using the definition of the derivative, find the derivative of $f(x) = (x + 1)^3$. Show all your steps including the binomial expansion.
- 29. Given $f(x) = ax^2 + bx + c$, use first principles to derive the expression for f'(x) and then evaluate f'(a) in terms of a and b.