

In this worksheet you will study the properties and graphs of quadratic functions to see how they model real-world phenomena. You will explore algebraic manipulation, factorisation, graph sketching and the interpretation of quadratic models.

Easy Questions

- 1. Identify the coefficients in the quadratic function $f(x) = 3x^2 + 2x 5$. Write down the values of a, b and c.
- 2. For the quadratic function $f(x) = x^2 4x + 3$, state its y-intercept.
- 3. Evaluate the function $f(x) = 2x^2 x + 1$ at x = 2. Show your calculation.
- 4. Sketch the graph of the function $f(x) = x^2$. Label the vertex and the y-intercept.
- 5. State whether the graph of $f(x) = x^2$ is symmetric. If yes, state the line of symmetry in words.

Intermediate Questions

- 6. Factorise $x^2 + 5x + 6$.
- 7. Solve for x in the equation $x^2 x 6 = 0$.
- 8. Rewrite $x^2 + 6x + 5$ in the form $(x + p)^2 + q$ by completing the square.
- 9. Find the x-intercepts of the function $f(x) = x^2 9$. Show all steps.
- 10. Sketch the graph of $f(x) = -x^2 + 4$ on the coordinate plane. Use the diagram below as a reference and mark the intercepts.
- 11. For the function $f(x) = -x^2 + 2x + 3$, state whether the parabola opens upwards or downwards and explain your reasoning based on the coefficient of x^2 .
- 12. Determine the x-intercepts of $f(x) = x^2 9$ by expressing the quadratic in factorised form.
- 13. Explain the effect of changing the coefficient a in $f(x) = ax^2$ on the shape of the graph. Compare the cases when a = 1 and when a = 2.
- 14. Sketch the graph of $f(x) = \frac{1}{2}x^2 2$ on the provided coordinate grid. Clearly label important points such as the vertex and intercepts.

- 15. Discuss how quadratic functions can model real-world phenomena such as projectile motion. Describe one scenario and explain which features of the quadratic function are relevant.
- 16. For the function $f(x) = (x 1)^2 + 3$, determine the minimum value of f and the value of x at which this minimum occurs.
- 17. Solve the equation $(x+2)^2 = 16$ for x. Show all steps.
- 18. Find a quadratic function in the form $f(x) = a(x-r_1)(x-r_2)$ that has x-intercepts at x = 2 and x = 5 and a y-intercept of 10. Explain your reasoning.
- 19. Describe the effect of translating the quadratic function $f(x) = x^2$ two units to the left and three units down. Write the equation of the new function.
- 20. Given $f(x) = 3x^2 + 6x + c$ and that f(0) = 9, determine the value of c.

Hard Questions

- 21. Derive the formula for the vertex of a quadratic function in the form $f(x) = ax^2 + bx + c$ by completing the square. Provide all steps in your derivation.
- 22. For a quadratic function $f(x) = ax^2 + bx + c$, discuss in detail how variations in the coefficient *b* affect the position of the vertex. Justify your explanation.
- 23. For the function $f(x) = -2x^2 + 4x + 1$, determine the intervals on which f is increasing and the intervals on which f is decreasing. Explain your reasoning.
- 24. If a quadratic function $f(x) = ax^2 + bx + c$ is known to have a maximum value, what can be concluded about the sign of a? Provide a justification for your answer.
- 25. A ball is thrown and its height h (in metres) at time t (in seconds) is modelled by a quadratic function. If the ball reaches its highest point at t = 2 seconds and lands at t = 5 seconds, outline the steps you would take to formulate a quadratic function modelling this scenario. Do not perform any calculations.
- 26. Explain how the graph of a quadratic function is related to its factorised form $f(x) = a(x r_1)(x r_2)$. In your answer, discuss the significance of r_1 and r_2 .
- 27. For the quadratic function $f(x) = a(x-h)^2 + k$, discuss the effect of increasing h and k on the graph of f. Illustrate your explanation with a diagram.
- 28. Establish and explain the relationship between the coefficients in $f(x) = ax^2 + bx + c$ and the position of its x-intercepts (when they exist).
- 29. Consider the real-world example of designing a parabolic arch. Explain how quadratic functions are utilised in the design process, including how altering the coefficients can change the shape and dimensions of the arch.
- 30. For the quadratic function $f(x) = \frac{1}{2}x^2 4x + 7$, determine all intercepts and sketch an accurate graph of the function. On your sketch, label the x-intercepts, the y-intercept and the vertex.