

In this worksheet you will learn how to find the inverse of a function and understand the special relationship between a function and its inverse. You will practise finding inverses of various types of functions, verifying your answers by composition, and analysing the graph reflections about the line y = x.

Easy Questions

- 1. Given f(x) = 2x + 3, determine $f^{-1}(x)$.
- 2. Given f(x) = x 5, determine $f^{-1}(x)$.
- 3. Given f(x) = -x + 1, determine $f^{-1}(x)$.
- 4. Evaluate using the inverse: If f(x) = x + 7, find $f^{-1}(10)$.
- 5. Explain in a short paragraph the relationship between a function and its inverse, particularly why their graphs are reflections about the line y = x.

Intermediate Questions

- 6. Given $f(x) = \frac{x-1}{4}$, determine $f^{-1}(x)$ showing all working.
- 7. Given f(x) = 3x 2, determine $f^{-1}(x)$ and state the domain and range of both f and f^{-1} .
- 8. Given f(x) = 4 x, show your working to determine $f^{-1}(x)$.
- 9. For f(x) = 5x + 9, first determine $f^{-1}(x)$ then show that $f(f^{-1}(x)) = x$.
- 10. Given f(x) = 2x + 1, determine $f^{-1}(x)$ and verify your answer by showing that $f(f^{-1}(x)) = x$.
- 11. Given $f(x) = x^2$ for $x \ge 0$, determine $f^{-1}(x)$ and state the domain and range of f^{-1} .
- 12. Draw and label the graphs of an invertible function and its inverse, including the line y = x.
- 13. Given $f(x) = \frac{2x+5}{3}$, determine $f^{-1}(x)$ showing your working.
- 14. Find and verify the inverse with instruction: Given f(x) = 7x 4, determine $f^{-1}(x)$ and verify the result by composing f and f^{-1} .

- 15. Given $f(x) = \frac{1}{2}x + 8$, determine $f^{-1}(x)$ and state the domain and range.
- 16. Given $f(x) = \frac{x}{3} 7$, determine $f^{-1}(x)$.
- 17. Given f(x) = -3x + 2, prove that $f^{-1}(x) = \frac{2-x}{3}$ and verify your answer by composing f and f^{-1} .
- 18. Given f(x) = 4 2x, determine $f^{-1}(x)$ showing all algebraic steps.
- 19. Given $f(x) = \frac{3}{x+1}$, determine $f^{-1}(x)$. Clearly state any restrictions on the domain for which the inverse exists.
- 20. For a linear function f(x) = ax + b, find the values of a and b for which f is self-inverse (i.e. $f(x) = f^{-1}(x)$). Show all working.

Hard Questions

- 21. For $f(x) = \frac{2-x}{3}$, first determine $f^{-1}(x)$ and then find all values of x for which $f(x) = f^{-1}(x)$. Provide detailed working.
- 22. Given $f(x) = \frac{x+2}{2x-3}$, determine $f^{-1}(x)$. Also, state any restrictions on the domain of f where it is invertible.
- 23. For the function $f(x) = \frac{3x-4}{x+5}$ (with $x \neq -5$), find $f^{-1}(x)$ and verify your answer by showing that $f(f^{-1}(x)) = x$.
- 24. Prove that if a function f is invertible then its inverse f^{-1} is also invertible and that $(f^{-1})^{-1} = f$. Provide a formal explanation.
- 25. Given $f(x) = \sqrt{x+3}$ for $x \ge -3$, determine $f^{-1}(x)$ and state the domain of f^{-1} .
- 26. For $f(x) = x^3 + 1$, determine $f^{-1}(x)$ and show all steps.
- 27. Given $f(x) = \frac{2x+3}{x-1}$ (with $x \neq 1$), determine $f^{-1}(x)$ and clearly state any domain restrictions.
- 28. Explain why the function f(x) = |x| is not invertible over the real numbers. Then, state a restriction on the domain of f that makes it invertible and find the inverse function for that restricted domain.
- 29. Consider the function $f(x) = e^x$. Find the inverse function $f^{-1}(x)$ and state its domain. (Recall that the inverse of the exponential function is the natural logarithm.)
- 30. For the linear function f(x) = 3x + 1, first determine $f^{-1}(x)$. Then, explain briefly why the graph of f and the graph of $f^{-1}(x)$ are reflections of each other about the line y = x.

www.illawarratutoring.com.au