

This worksheet focuses on inverse functions. You will learn how to find the inverse of a function algebraically and understand the special relationship between a function and its inverse. Recall that to find the inverse of a function you swap the roles of the variable and the function output and then solve for the new output variable.

Easy Questions

- 1. Find the inverse of the function f(x) = 2x + 3.
- 2. Find the inverse of the function f(x) = x 7.
- 3. State in one or two sentences the reflection property shared by a function and its inverse.
- 4. Find the inverse of the function f(x) = -x.
- 5. Find the inverse of the function f(x) = 3x.

Intermediate Questions

- 6. Find the inverse of the function $f(x) = \frac{x-5}{4}$.
- 7. Find the inverse of the function f(x) = 4x + 1.
- 8. Find the inverse of the function f(x) = 2 x.
- 9. Find the inverse of the function f(x) = -3x + 7.
- 10. Find the inverse of the function $f(x) = \frac{1}{2}x 4$.
- 11. Explain why a function must be one-to-one in order for its inverse to also be a function.
- 12. Find the inverse of the function $f(x) = \frac{x+2}{x-1}$. In your answer state any restrictions on the domain.
- 13. Find the inverse of the function $f(x) = \frac{2x-3}{5}$.
- 14. For the function f(x) = 3x + 1 with inverse $f^{-1}(x) = \frac{x-1}{3}$, verify by composing f and f^{-1} that $f(f^{-1}(x)) = x$.

www.illawarratutoring.com.au

- 15. Find the inverse of the function $f(x) = \frac{1}{x+2}$ and state the domain of the inverse.
- 16. Find the inverse of the function $f(x) = -\frac{x}{3} + 2$.
- 17. Find the inverse of the function $f(x) = \frac{5-2x}{3}$.
- 18. Find the inverse of the function $f(x) = \frac{4}{x-1}$.
- 19. Find the inverse of the function $f(x) = \frac{x+1}{2x+3}$.
- 20. Using pen and paper, draw a diagram that shows a function and its inverse as reflections across the line y = x. Label both the function and its inverse.

Hard Questions

- 21. Suppose $f(x) = \frac{ax+b}{cx+d}$ with $ad-bc \neq 0$. Derive a general expression for the inverse function $f^{-1}(x)$.
- 22. Let $f(x) = \frac{2x-1}{3x+4}$. Prove by algebraic manipulation that the inverse function is

$$f^{-1}(x) = \frac{-4x - 1}{3x - 2} \,.$$

- 23. Consider the function $f(x) = x + \frac{1}{x}$ for $x \neq 0$. Determine whether f has an inverse function over its entire domain. Justify your answer.
- 24. The function $f(x) = \sqrt{x}$ has inverse $f^{-1}(x) = x^2$ when its domain is $x \ge 0$. Explain why it is necessary to restrict the domain of $g(x) = x^2$ in order for its inverse to be a function.
- 25. Prove that if a function f is invertible then its inverse function f^{-1} is also invertible and that $(f^{-1})^{-1} = f$. Provide a complete proof using the definition of inverse functions.