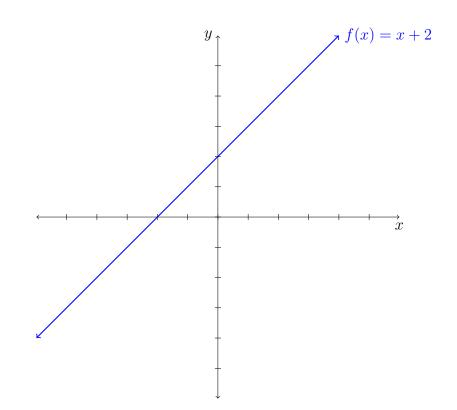


In this worksheet you will learn how to find the inverse of a function and understand the special relationship between a function and its inverse. You will practise finding inverses, verifying the symmetry about the line y = x, and exploring the properties of inverse functions.

Easy Questions

- 1. Find the inverse of the function. Write your answer in the form $f^{-1}(x)$. f(x) = 2x + 5
- 2. Determine $f^{-1}(x)$ for the function. f(x) = x - 3
- 3. Decide if the function is its own inverse. Explain your reasoning. $f(x) = \frac{1}{x}$
- 4. Find the inverse of the function. f(x) = -x
- 5. Find $f^{-1}(x)$ when $f(x) = \frac{x+1}{2}$

Intermediate Questions


- 6. Compute the inverse of the function. f(x) = 3x - 4
- 7. Find $f^{-1}(x)$ for the function. $f(x) = \frac{1}{2}x + 7$
- 8. Determine the inverse of the function. f(x) = -2x + 6
- 9. Find the inverse of the function. $f(x) = \frac{x-2}{3}$
- 10. Determine $f^{-1}(x)$ for the function. f(x) = 5 - x

www.illawarratutoring.com.au

- 11. Calculate the inverse of the function given by f(x) = 4x + 1
- 12. For the function $f(x) = \frac{x}{3}$, verify that its graph and the graph of $f^{-1}(x)$ are reflections about the line y = x. Explain your reasoning.
- 13. Show that for f(x) = 2x 5, composing f with f^{-1} returns the original input. That is, prove $f(f^{-1}(x)) = x$.
- 14. Find the inverse of the function. f(x) = 1 - x
- 15. Determine $f^{-1}(x)$ for the function. $f(x) = \frac{3x+4}{2}$
- 16. Compute the inverse of the function. $f(x) = \frac{2x-3}{5}$
- 17. Find the inverse of the function given by $f(x) = \frac{7 2x}{3}$
- 18. Determine $f^{-1}(x)$ when f(x) = -3x + 2
- 19. Find the inverse function $f^{-1}(x)$ for $f(x) = \frac{x+3}{4}$
- 20. For the function $f(x) = \frac{1}{x-2}$, find $f^{-1}(x)$. In your answer also state clearly the domain of f and f^{-1} .

Hard Questions

- 21. Prove that the graph of a function and its inverse are symmetric about the line y = x. Use the function f(x) = 2x + 3 as an example to illustrate your proof.
- 22. For $f(x) = \frac{3x-1}{4}$, first derive $f^{-1}(x)$. Then, compute the composition $f(f^{-1}(x))$ and verify that it simplifies to x.
- 23. Let $f(x) = \frac{-x+5}{2}$. Find $f^{-1}(x)$ and show by direct calculation that $f(f^{-1}(x)) = x$.
- 24. The graph of f(x) = x + 2 is shown in the diagram below. Using the diagram as a reference, sketch the graph of $f^{-1}(x)$ on the same set of axes.

Write a short explanation of how the graph of $f^{-1}(x)$ relates to the graph of f(x).

- 25. Consider the function $f(x) = \frac{x+2}{x-1}$. Discuss the conditions needed for f to be invertible. Then, find $f^{-1}(x)$ for the valid domain.
- 26. For the function $f(x) = \sqrt{x+3}$, determine the inverse function $f^{-1}(x)$. Include a discussion of the necessary domain restrictions for both f and f^{-1} .
- 27. Find the inverse of $f(x) = \frac{1}{3x+2}$. Clearly state any restrictions on the variable that are required for the function and its inverse.
- 28. Prove that if f is invertible then $(f^{-1})^{-1} = f$. Illustrate your proof by finding the inverse of $f^{-1}(x)$ when f(x) = 5x 4.
- 29. Let f be an invertible function. Explain why $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$ for all x in the appropriate domains. Then, provide an example using f(x) = 2x + 1 to support your explanation.
- 30. For the function $f(x) = \frac{2x+3}{x-4}$, determine the inverse function $f^{-1}(x)$. Then, verify your answer by demonstrating that $f^{-1}(f(x)) = x$.