

In this worksheet you will develop a solid understanding of logarithms, the inverse of exponential functions, and learn how to work with them. Recall that for any positive numbers a and b (with $b \neq 1$), the logarithm $\log_b(a)$ is defined as the unique number c such that $b^c = a$.

Easy Questions

- 1. Evaluate $\log_2(8)$.
- 2. Find the value of $\log_{10}(1000)$.
- 3. Solve for x in the equation $10^x = 100$.
- 4. Write in your own words the meaning of $\log_b(a) = c$.
- 5. Determine the value of $\log_3(27)$.

Intermediate Questions

- 6. Evaluate $\log_5(125)$.
- 7. Simplify $2^{\log_2(7)}$.
- 8. Explain why if $b^x = a$ then $\log_b(a) = x$.
- 9. Solve for x if $\log_3(x) = 4$.
- 10. Rewrite $\log_7(49) = x$ in exponential form and determine x.
- 11. Evaluate $\log_{10}(10000)$.
- 12. Determine $\log_4(16)$.
- 13. Write the definition of a logarithm and illustrate it by evaluating $\log_2(32)$.
- 14. Solve for x in the equation $\log_3(x) = 3$.
- 15. Explain why the logarithm function is the inverse of the exponential function.
- 16. Evaluate $\log_{100}(10000)$.
- 17. If $\log_b(81) = 4$, find *b* by writing $b^4 = 81$.
- 18. Find $10^{\log_{10}(a)}$ in terms of a for any positive a.

- 19. Verify that $\log_2(2) = 1$ and explain why this holds true.
- 20. Convert the equation $b^y = x$ into logarithmic form.

Hard Questions

- 21. Explain why the one-to-one nature of the function $f(x) = b^x$ (with b > 0 and $b \neq 1$) implies that $\log_b(x)$ is also one-to-one.
- 22. If $\log_b(16) = 4$, determine b.
- 23. Examine the diagram below and identify the vertical asymptote of the function $y = \log_2(x)$.

- 24. Describe how the function $y = \log_{10}(x)$ behaves as x increases and as x approaches 0. Explain the difference in growth rates.
- 25. Provide an example of a real-life situation that is modelled using a logarithmic scale and briefly explain how the properties of logarithms make them useful in that context.
- 26. Demonstrate with a numerical example that $10^{\log_{10}(7)}$ equals 7.
- 27. For the function $f(x) = \log_b(x)$ where b > 1, describe how f(x) changes as x increases. Is the function increasing or decreasing? Explain your answer.
- 28. Explain why the domain of $y = \log_b(x)$ is $(0, \infty)$.
- 29. Solve the equation $\log_7(x) = 2$ by rewriting it in exponential form.
- 30. Explain why the logarithm function is the inverse of the exponential function by considering the compositions f(g(x)) and g(f(x)) where $f(x) = \log_b(x)$ and $g(x) = b^x$.