

In this worksheet you will develop a solid understanding of logarithms, the inverse of exponential functions. You will learn to convert between logarithmic and exponential forms, interpret the meaning of a logarithm and explore key properties that follow directly from the definition.

Easy Questions

- 1. Evaluate $\log_{10}(100)$.
- 2. Write the exponential form of the statement $\log_2(8) = 3$.
- 3. Express $\log_5(125)$ as a single number.
- 4. Find the inverse function of $f(x) = 10^x$.
- 5. Provide the definition of a logarithm in your own words.

Intermediate Questions

- 6. Solve for x if $\log_4(x) = 3$.
- 7. Write the equivalent exponential form for $\log_7(y) = 2$.
- 8. Evaluate $\log_3(81)$.
- 9. Given that $\log_5(125) = 3$, explain in exponential form why this is true.
- 10. Let $f(x) = \log_2(x)$. Calculate f(16).
- 11. Sketch the graph of $y = \log_2(x)$ on a coordinate plane. Plot at least three points by converting between exponential and logarithmic forms. (Use pen and paper.)
- 12. Explain in a short paragraph why logarithms are the inverses of exponential functions.
- 13. For the function $f(x) = \log_5(x)$, determine the value of f(25).
- 14. Find x if $\log_{10}(x) = 4$.
- 15. State the domain of the function $\log_3(x)$.
- 16. Define the inverse function of $g(x) = \log_2(x)$ in exponential terms.
- 17. If $f(x) = \log_4(x)$, determine f(1) and f(4).

- 18. Write a brief explanation of the relationship between the graphs of $y = 4^x$ and $y = \log_4(x)$.
- 19. Convert the statement "Two to the power of three is eight" into logarithmic form.
- 20. Explain the significance of the base in a logarithmic expression and illustrate your answer using an example with base 2.

Hard Questions

- 21. Prove that the function $f(x) = \log_2(x)$ is one-to-one by showing that if f(a) = f(b) then a = b.
- 22. For the function $f(x) = \log_3(x)$, determine the x-intercept of its graph.
- 23. Explain how the graph of $y = \log_{10}(x)$ can be used to solve the equation $\log_{10}(x) = 2$.
- 24. Discuss how varying the base affects the steepness of the logarithmic curve. In your explanation, compare the cases for base 2 and base 10.
- 25. Show that $\log_5(1) = 0$ by converting the logarithmic equation to its equivalent exponential form.
- 26. Discuss why the logarithm function is undefined for values of $x \leq 0$. Use the definition of a logarithm in your explanation.
- 27. If $\log_2(x) = y$, express x in terms of y and explain the process used.
- 28. Using the concept of logarithms as the inverse of exponentials, explain how one might solve for time in a continuous growth scenario. (Conceptual explanation only.)
- 29. Describe how the domain and range of $y = \log_7(x)$ compare to those of $y = 7^x$.
- 30. Create a real-world scenario where logarithms are utilised and explain why the inverse nature of logarithms is vital in that context.