

In this worksheet you will learn to use the change of base formula to evaluate logarithms in different bases. Recall that $\log_b a = \frac{\log_c a}{\log_c b}$ for any positive base $c \neq 1$. Work through the following questions.

Easy Questions

- 1. Evaluate $\log_2 8$ using the change of base formula with base 10.
- 2. Evaluate $\log_5 25$ by writing it as a quotient of logarithms in base 10.
- 3. Evaluate $\log_3 81$ using the change of base formula with natural logarithms.
- 4. Write $\log_7 49$ in terms of base 10 logarithms using the change of base formula.
- 5. Evaluate $\log_4 16$ by applying the change of base formula with a suitable base.

Intermediate Questions

- 6. Evaluate $\log_3 9$ using the change of base formula.
- 7. Use the change of base formula with base 2 to compute $\log_8 16.$
- 8. Express $\log_2 5$ as $\frac{\log_{10} 5}{\log_{10} 2}$.
- 9. Write $\log_5 3$ as $\frac{\ln 3}{\ln 5}$.
- 10. Express $\log_7 2$ in terms of common logarithms.
- 11. Evaluate $\log_{16} 64$ by rewriting it with the change of base formula.
- 12. Simplify $\frac{\ln 125}{\ln 5}$ using the change of base formula.
- 13. Simplify $\frac{\log_{10} 49}{\log_{10} 7}$ using the change of base formula.
- 14. Express $\log_{x^2} a$ in terms of $\log_x a$.
- 15. Show that $\frac{\log_b a}{\log_b c} = \log_c a$ by using the change of base formula, and verify your result for a = 8, b = 2 and c = 4.

www.illawarratutoring.com.au

- 16. Given $\log_k 16$, verify the identity $\log_k 16 = \frac{4}{\log_2 k}$ by applying the change of base formula.
- 17. Evaluate $\log_{0.5} 8$ using the change of base formula.
- 18. Express $\log_9 27$ in terms of logarithms with base 3 using the change of base formula.
- 19. Using the change of base formula write $\log_b a = \frac{\log_{10} a}{\log_{10} b}$. Then evaluate $\log_5 50$ (you may use a calculator for an approximate value).
- 20. Prove that $\log_b a = \frac{1}{\log_a b}$ by using the change of base formula.

Hard Questions

- 21. Derive the change of base formula starting from the definition of logarithms. Explain each step in your derivation.
- 22. Given that $\log_b a = x$, prove that $a = b^x$ and use this result to derive the change of base formula.
- 23. Solve for x in the equation $\log_x 27 = \frac{3}{\log_3 x}$ by rewriting the logarithms using a common base.
- 24. Given $\log_2 x = b$, express $\log_4 x$ in terms of b using the change of base formula.
- 25. If $\log_x 8 = \log_2 16$, solve for x by rewriting both sides with a common base.
- 26. Given $\log_{2x} 32 = 5$, solve for x using the change of base formula.
- 27. Prove that for any positive numbers a, b and c, the identity $\log_a c = \log_a b \cdot \log_b c$ holds. Use the change of base formula in your proof.
- 28. If $\log_x y = \frac{1}{2}$, express y in terms of x using the definition of logarithms and the change of base formula.
- 29. Show that $\frac{\log_m n}{\log_m p} = \log_p n$ by using the change of base formula. Then, evaluate this expression for m = 10, n = 25, and p = 5 (provide an approximate answer if necessary).
- 30. Prove that $\log_b \sqrt{a} = \frac{1}{2} \log_b a$ by using the change of base formula and explain each step in your proof.