

In this worksheet you will learn to use the change of base formula to evaluate logarithms in different bases. You will practice rewriting logarithms with a new base and applying the formula to compute values.

Easy Questions

- 1. Write the change of base formula for logarithms in your own words.
- 2. Evaluate $\log_4 16$ using the change of base formula.
- 3. Evaluate $\log_3 27$ using the change of base formula.
- 4. Express $\log_5 125$ in terms of common logarithms and simplify.
- 5. Verify that $\log_a b = \frac{1}{\log_b a}$ using the change of base formula.

Intermediate Questions

- 6. Evaluate $\log_7 49$ using natural logarithms.
- 7. Express $\log_9 27$ in terms of common logarithms.
- 8. Solve for x if $\log_x 16 = 4$ by rewriting the equation using the definition of logarithms.
- 9. Evaluate $\log_8 32$ using the change of base formula.
- 10. Express $\log_4 32$ in terms of \log_2 and simplify.
- 11. Evaluate $\log_5 625$ using natural logarithms.
- 12. Show that $\log_a b = \frac{1}{\log_b a}$ by applying the change of base formula.
- 13. Express $\log_2 10$ using common logarithms.
- 14. Simplify $\frac{\log_3 81}{\log_3 9}$ using the change of base formula.
- 15. Given that $\log_3 7 \approx 1.7712$ and $\log_3 5 \approx 1.4649$, use the change of base formula to calculate $\log_5 7$.
- 16. Evaluate $\log_6 216$ using natural logarithms.
- 17. Given $\log_2 5 \approx 2.3219$, find $\log_4 5$ using the change of base formula.

- 18. Express $\log_{12} 18$ in terms of natural logarithms using the change of base formula.
- 19. Evaluate $\log_{16} 32$ using the change of base formula.
- 20. Express $\log_{27}9$ in terms of \log_3 and simplify.

Hard Questions

- 21. Derive the change of base formula $\log_b a = \frac{\log_c a}{\log_c b}$ starting from the definition of logarithms.
- 22. Prove that $\log_b a = \frac{\log_c a}{\log_c b}$ is valid for any positive constant $c \neq 1$ by comparing exponential forms.
- 23. Solve for x if $\log_x 81 = \frac{4}{3}$ by rewriting the expression in exponential form.
- 24. Express $\frac{\ln 64}{\ln 8}$ in the form of a logarithm and simplify the result.
- 25. Given that $\log_{10} 2 \approx 0.3010$, evaluate $\log_2 50$ by rewriting it in common logarithms.
- 26. Evaluate $\log_{\sqrt{2}} 8$ using the change of base formula.
- 27. Simplify $\log_4 2 + \log_2 16$ using the change of base formula and properties of logarithms.
- 28. Evaluate $\frac{\log_2 45}{\log_5 45}$ and simplify your answer using the change of base formula.
- 29. Prove that $\log_{b^k} a = \frac{1}{k} \log_b a$ by applying the change of base formula and logarithmic properties.
- 30. Given that $\log_2 3 \approx 1.585$, evaluate $\log_8 27$ using the change of base formula.