

In this worksheet you will learn to use the change of base formula to evaluate logarithms in different bases. You will practise rewriting logarithms using a new base (commonly base 10 or base e) and apply this technique in both numerical and algebraic contexts.

Easy Questions

- 1. Write the change of base formula for logarithms using common logarithms.
- 2. Evaluate $\log_2 8$ using common logarithms and the change of base formula.
- 3. Evaluate $\log_3 9$ using the change of base formula with common logarithms.
- 4. Express $\log_5 25$ in terms of common logarithms using the change of base formula.

5. Show that
$$\log_b a = \frac{1}{\log_a b}$$
.

Intermediate Questions

- 6. Evaluate $\log_4 64$ using the change of base formula with common logarithms.
- 7. Express $\log_2 5$ in terms of natural logarithms.
- 8. Write $\log_7 125$ in terms of common logarithms using the change of base formula.
- 9. Given $\log_{10} 7 \approx 0.8451$, find $\log_7 10$ using the change of base formula.
- 10. Express $\log_6 36$ using natural logarithms.
- 11. Evaluate $\log_7 49$ using the change of base formula with natural logarithms.
- 12. Verify the identity $\log_a b \cdot \log_b a = 1$ using the change of base formula.
- 13. Express $\log_4 2$ in terms of $\log_2 2$.
- 14. Solve for x if $\log_3 x = 2$.
- 15. Determine $\log_5 125$ using the change of base formula with common logarithms.
- 16. Rewrite $\log_2 10$ in terms of natural logarithms.
- 17. Use the change of base formula to simplify $\log_9 27$ in terms of natural logarithms.
- 18. Given $\log_{10} 2 \approx 0.3010$, compute $\log_2 10$.

- 19. Express $\log_8 32$ using natural logarithms and calculate its approximate value.
- 20. Derive the inverse relationship between $\log_b a$ and $\log_a b$ using the change of base formula.

Hard Questions

- 21. Prove the change of base formula starting from the definition of logarithms.
- 22. Solve the equation $\log_4 x = \frac{\log_{10} x}{\log_{10} 4}$ and discuss why this equality holds.
- 23. Show that $\log_b a = \frac{1}{\log_a b}$ and then use this result to compute $\log_2 8$.
- 24. Derive an expression for $\log_2 60$ using common logarithms given that $\log_{10} 2 \approx 0.3010$, $\log_{10} 3 \approx 0.4771$, and $\log_{10} 5 \approx 0.6990$.
- 25. Given that $\log_3 2 \approx 0.6309$, evaluate $\log_2 3$ using the change of base formula.
- 26. Simplify $\frac{\log_7 49}{\log_7 7}$ using the change of base concept.
- 27. If $\log_b a = x$, express $\log_b(a^3)$ in terms of x.
- 28. Verify that $\log_2 18 = \frac{\ln 18}{\ln 2}$ and estimate its value using $\ln 2 \approx 0.6931$ and $\ln 18 \approx 2.8904$.

29. Prove that for any positive real numbers a and b, $\frac{\log a}{\log b} = \log_b a$.

30. Solve for x in the equation $\frac{\log x}{\log 2} = \frac{\log(x+6)}{\log 3}$.